Textbook Exercises 7.9.1, 7.9.2: 6-12, 7.9.3: 1-6
7.9.1. Prove the following syllogisms valid first using natural deduction and then using the method of tableaux:
First Figure, Moods EAE, EIO
Second Figure, Moods AEE, AOO
Third Figure, Moods AII, OAO
Fourth Figure, Moods AEE, IAI
7.9.2. Construct formal proofs for all the arguments below. Use equivalence rules, truth functional arguments, and the rules of instantiation and generalization. These may also be proven using the method of tableaux.
6. ∀x(Cx ⊃ ¬Sx), Sa ∧ Sb ∴ ¬(¬Ca ⊃ Cb)
7. ∃xCx ⊃ ∃x(Dx ∧ Ex), ∃x(Ex ∨ Fx) ⊃ ∀xCx ∴ ∀x(Cx ⊃ Gx)
8. ∀x(Fx ⊃ Gx), ∀x[(Fx ∧ Gx) ⊃ Hx] ∴ ∀x(Fx ⊃ Hx)
9. ∃xLx ⊃ ∀x(Mx ⊃ Nx), ∃xPx ⊃ ∀x ¬Nx ∴ ∀x[(Lx ∧ Px) ⊃ ¬Mx]
10. ∀x(Fx ≡ Gx), ∀x[(Fx ⊃ (Gx ⊃ Hx)], ∃xFx ∨ ∃xGx ∴ ∃xHx
11. ∃x(Cx ∨ Dx), ∃xCx ⊃ ∀x(Ex ⊃ Dx), ∃xEx ∴ ∃xDx
12. ∀x[(¬Dx ⊃ Rx) ∧ ¬(Dx ∧ Rx)], ∀x[Dx ⊃ (¬Lx ⊃ Cx)], ∀x(Cx ⊃ Rx) ∴ ∀x(Dx ⊃ Lx)
7.9.3. Using the method of tableaux, give an assignment of values for the predicates of each argument that shows that each argument is invalid.
1. ∀x(Ax ⊃ Bx), ∀x(Ax ⊃ Cx) ∴ ∀x(Bx ⊃ Cx)
2. ∃x(Ax ∧ Bx), ∀x(Cx ⊃ Ax) ∴ ∃x(Cx ∧ Bx)
3. ∀x[(Cx ∨ Dx) ⊃ Ex], ∀x[(Ex ∧ Fx) ⊃ Gx] ∴ ∀x(Cx ⊃ Gx)
4. ∃xMx, ∃xNx ∴ ∃x(Mx ∧ Nx)
5. ∀x[Dx ∨ (Ex ∨ Fx)] ∴ ∀xDx ∨ (∀xEx ∨ ∀xFx)
6. ∃x(Cx ∧ ¬Dx), ∃x(Dx ∧ ¬Cx) ∴ ∀x(Cx ∨ Dx)
Do you need help with this assignment or any other? We got you! Place your order and leave the rest to our experts.